مجله سلامت و محیط، فصلنامه ی علمی پژوهشی

انجمن علمي بهداشت محيط ايران

دوره هفتم ، شماره اول، بهار ۱۳۹۳ ، صفحات ۲۱ تا ۳۴

بررسی کارایی پودر کربن فعال مغناطیسی شده با نانو ذرات $\operatorname{Fe}_{a}O_{4}$ جهت حذف آموکسی سیلین از محیط های آبی: مطالعه سینتیک و تعادل فرآیند جذب

بابک کاکاوندی'، روشنک رضایی کلانتری'، احمد جنیدی جعفری"، علی اسرافیلی"، عبدالمجید قلیزاده[،]، علی آذری ^{*}

دريافت: ٩١/٠٩/٢٩ يذيرش: ٩١/٠٩/٢٩

چکیدہ

زمینه و هدف: استفاده بی رویه از آنتی بیوتیک ها و تخلیه آن ها به محیط زیست پیامدهای جدی و خطرناکی را به دنبال دارد. کربن فعال پودری در سطح وسیعی برای جذب این آلاینده ها استفاده شده است اما مشکلات ناشی از جداسازی آن مطرح است. هدف از این مطالعه سنتز کربن فعال مغناطیسی شده با نانو ذرات Fe₃O₄ و بررسی کارایی آن در حذف آموکسی سیلین از محیط های آبی بوده است.

روش بررسی: مشخصات فیزیکی و ساختاری جاذب سنتز شده با تکنیک های SEM، TEM، XRD و BET مورد آنالیز قرار گرفت. همچنین برای تعیین پارامترهای ترمودینامیک، ایزوترم های تعادلی و سینتیک های فرآیند جذب تاثیر پارامترهایی نظیر pH، غلظت اولیه آموکسی سیلین و جاذب، زمان تماس و دما مورد مطالعه قرار گرفت.

یافته ها: مشخصات فیزیکی کربن فعال مغناطیسی نشان داد که نانوذرات Fe₃O₄ دارای اندازه متوسط nm ۸۰–۳۰ و سطح ویژه برابر با 2/K ۵۷۱ بوده است. شرایط بهینه ی جذب عبارتند از: pH=۵، زمان تماس nin ۹۰ ، دز جاذب ۱*۹/L و د*مای ۲^{۰۰} ۲. داده های ایزوترم های تعادلی نشان داد که فرآیند جذب متناسب با هر دو مدل فروندلیچ و لانگمیر بوده و حداکثر ظرفیت جذب به میزان 1/۳۶/۹۸ mg/8 بوده است. فرآیند جذب می تواند به وسیله مدل سینتیکی شبه درجه دوم توصیف شود. مقادیر منفی به دست آمده برای ΔH⁰ و ΔG⁰ از مطالعه ترمودینامیک جذب نیز نشان داد که جذب آموکسی سیلین روی کربن فعال مغناطیسی، اگزوترمیک و خودبخودی بوده است.

نتیجهگیری: مطالعه حاضر نشان داد که کربن فعال مغناطیسی علاوه بر داشتن ویژگی هایی چون، جداسازی سریع و آسان، پتانسیل بالایی را برای جذب آموکسی سیلین دارد. لذا می توان از آن برای جذب و جداسازی چنین آلاینده هایی از محیط های آبی استفاده نمود.

واژگان کلیدی: آموکسی سیلین، فرایند جذب ، کربن فعال مغناطیسی، ایزوترم، نانو ذرات Fe₃O₄

۱-دانشجوی دکترای بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی جندی شاپور اهواز

rezaei.r@iums.ac.ir (نویسنده مسئول): دکترای عمران محیط زیست، دانشیار گروه مهندسی بهداشت محیط دانشکده بهداشت دانشگاه علوم پزشکی ایران، تهران، ایران

۵- مربی گروه بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی خراسان شمالی، بجنورد، ایران

۶- کارشناسی ارشد گروه بهداشت محیط، دانشکده بهداشت، دانشگاه علوم پزشکی تهران، تهران، ایران

۳-دکترای بهداشت محیط، دانشیار گروه مهندسی بهداشت محیط دانشکده بهداشت دانشگاه علوم پزشکی ایران، تهران، ایران

۴- دکترای شیمی تجزیه، استادیار گروه مهندسی بهداشت محیط دانشکده بهداشت دانشگاه علوم پزشکی ایران، تهران، ایران

مقدمه

حدود ۹۰-۳۰٪ آنتی بیوتیک ها در بدن انسان و حیوانات متابولیزه نمی شوند و در نهایت از طریق ادرار و مدفوع به محیطزیست به شکل ترکیبات فعال وارد می شوند(۱). بنابراین منبع عمده آنتی بیوتیک ها در محیط زیست پساب های تصفیهخانه های فاضلاب است. از سایر منابع این آلاینده ها، تعفیهخانه های فاضلاب است. از سایر منابع این آلاینده ها، تخلیه داروهای منقضی شده، زائدات کشاورزی و دامپزشکی و همچنین تخلیه های ناشی از فعالیت های آزمایشگاهی و تحقیقاتی است(۲-۲). آموکسی سیلین آنتی بیوتیک متعلق به ارگانیسم کلاس پنی سیلین بوده که به عنوان یک دارو برای درمان عفونت های باکتریایی استفاده می شود(۵). آموکسی سیلین با فرمول شیمیایی S_5 (mod) می شود. ساختار شیمیایی این آنتی بیوتیک در شکل ۱ نشان داده شده است.

مطالعات نشان داده است که اکثر تصفیه خانه های فاضلاب حدود ۹۰–۶۰٪ از آنتی بیوتیک ها را می توانند حذف کنند و باقی مانده آن ها مستقیماً وارد آب های پذیرنده می شود(۱)، لذا تخلیه پساب های حاوی این آلاینده ها به محیط زیست پیامدهای جدی و خطرناکی را به دنبال خواهد داشت و ضروری است که تکنیک های موثر و کارامدتری برای حذف آن ها به کار گرفته شود. روش های مورد استفاده در این زمینه شامل اکسیداسیون شیمیایی(۶و۷)، فرآیندهای غشایی(۸)، شامل اکسیداسیون شیمیایی(۶و۷)، فرآیندهای غشایی(۸)، است. حذف و تصفیه زیستی آنتی بیوتیک ها به دلیل وجود حلقه پایدار نفتول (به عنوان ساختار اصلی) و سمیت آن برای میکروارگانیسم ها و همچنین تجزیه پذیری زیستی کم آن ها مشکل است(۱۹های). از سوی دیگر فرآیندهای غشایی نیز به

دلیل آسیب پذیری بالای غشا در برابر حلا ل های آلی موجود در فاضلاب های حاوی آنتی بیوتیک ها اغلب با مشکل مواجه شده و بنابراین راندمان آن ها کاهش می یابد(۷).

فرآیند جذب در مقایسه با تکنیک های دیگر تصفیه از نظر هزینه اولیه، استفاده مجدد از پساب، سادگی و انعطاف پذیری در طراحی، بهره برداری آسان و غیر حساس بودن به آلاینده ها و تركيبات سمى، مورد توجه بيشترى قرار گرفته است. توليد پساب با کیفیت بالا و عدم تشکیل رادیکال های آزاد و مواد خطرناک از مزایای دیگر این روش به حساب می آید(۱۴و۱۵). در میان جاذب های مورد استفاده در این فرآیند، کربن فعال به دلیل سطح و حجم بالای منافذ و ظرفیت بالای جذب متداول تر است(۱۶و۱۷). محققان زیادی از کربن فعال در جذب آنتی بیوتیک از محیط های آبی استفاده نموده اند(۱ ،۱۸و۱۹). اما متاسفانه مشکل اصلی در زمینه استفاده از کربن فعال پودری یا جاذب هایی با سایز نانو و یا نانو ذرات جداسازی آن ها از محلول به دلیل کوچک بودن اندازه ذرات است، بنابراین پراکندگی و تولید آلودگی ثانویه از مشکلات اساسی این سيستم ها است. لذا مغناطيسي نمودن اين جاذب ها مي تواند راهکاری مناسب در جهت رفع بسیاری از این مشکلات باشد. اخیراً روش جداسازی مغناطیسی به دلیل هزینه کم، سادگی و سرعت مطلوب و همچنین راندمان بالا به طور گسترده ای استفاده شده است(۲۰ و ۲۱). Shokohi و همکاران (۲۰۱۱) و Khodabakhshi و همکاران (۲۰۱۰) در حذف آلاینده ها از محیط های آبی، از روش مغناطیسی به منظور جداسازی جاذب از فاز مايع استفاده كردند(٢٢و٢٣). لازمه جداسازي مغناطيسي جاذب ها سنتز و یا ترکیب آن ها با نانو ذرات اکسیدهای فلزی است، از جمله آن ها ${\rm Fe_3O_4}~{
m MNPs}$ هستند که همراه با آلاینده هدف توسط یک آهنربا جذب و نهایتاً از محیط های آبی جداسازی می شوند. روش هم ترسیبی یک روش ساده و متداول در سنتز نانو ذرات اکسید آهن از محلول های نمک Fe²⁺/Fe³⁺ آب دار (نیترات آهن و کلرید آهن) است که در آن+Fe²⁺/Fe به صورت همزمان رسوب می کنند. این نانو ذرات مغناطیسی به دلیل پایداری شیمیایی و عدم ایجاد آلودگی ثانوی، برای استخراج و غنی سازی سلول ها، پروتئین ها، پپتید

الم المحمد من المحمد المحمد من منهم الماره اول بهار ۱۳۹۳ فصلنامه علمی پژوهشی انجمن علمی بهداشت محیط ایر ان روی سطح جاذب به ترتیب از میکروسکوپ الکترونی روبشی(SEM) مدل (PHILIPS، XL-۳۰) و میکروسکوپ الکترونی انتقالی (TEM) مدل (PHILIPS، EM، ۲۰۸) استفاده شد. همچنین برای آنالیز جاذب تولیدی از دستگاه پراکنش اشعه ایکس(XRD) مدل (۲۰۰۰، XNOVA، ۸۰۷۹) مورد آنالیز استفاده گردید. مساحت سطحی جاذب نیز با استفاده از روش BET مدل(۲۰۰۰، NOVA، ۸۰۷۹) مورد آنالیز قرار گرفت.

آزمایشات جذب: ابتدا مقدار ۱۶ از پودر آموکسی سیلین برای تهیه محلول استوک mg/L ۱۰۰۰ به آب مقطر اضافه شد و سپس برای رسم منحنی کالیبراسیون، محلول مذکور رقیق شده و محلول های استاندارد با غلظت های۵-۳g/L تهیه گردید. کلیه آزمایشات جذب در محیط بسته و در داخل ارلن های با حجم mL حاوی ۵۰ mL از غلظت های مشخصی از آموکسی سیلین و جاذب در pH، دما و زمان های تماس مختلف انجام شد. نمونه ها سپس در داخل شیکر (همزن) با دور ۲۴۰ rpm به منظور اختلاط مناسب جاذب و ماده جذب شونده، قرار داده شدند و پس از زمان مشخصی، جاذب به روش مغناطیسی از طریق تماس آهنربای خارجی، از محلول جدا و غلظت های باقی مانده آنتی بیوتیک با استفاده از اسپکتروفتومتر (UV-Visible (CE CECIL) nm) در حداکثر طول موج جذب آموکسی سیلین (۲۲۸) مورد سنجش قرار گرفت. pH محلول ها، نیز با استفاده M ازاسید کلریدریک M
 ۱/۱ (HCl) و هیدروکسید سدیم ۱/۱ (NaOH) تنظیم گردید. هر مرحله آزمایش سه بار تکرار شد و میانگین آن ها به صورت نتایج نهایی ارایه گردید. مقدار آموکسی سیلین جذب شده روی جاذب و راندمان حذف آن از طريق روابط زير محاسبه گرديد.

$$q_e = \frac{(C_0 - C_e)}{M}V \tag{1}$$

(٪) جذف (٪) =
$$\left(\frac{C_0 - C_e}{C_0}\right) \times 100$$

ها، هیدروکربن های آروماتیک چند حلقه ای و به ویژه حل مشکلات زیست محیطی (حذف ترکیبات شیمیایی، رنگ ها و گازها) به طور وسیع استفاده می شوند(۲۴،۱۴ و ۲۵). با توجه به موارد ذکر شده، هدف از مطالعه حاضر مغناطیسی کردن کربن فعال پودری با نانو ذرات Fe₃O₄ برای تهیه جاذب کردن کربن فعال پودری با نانو ذرات MNPs-AC Fe₃O₄ آموکسی سیلین از محیط های آبی بوده است. در این مطالعه ویژگی های جاذب سنتز شده، ایزوترم ها، سینتیک ها و ترمودینامیک جذب نیز مورد بررسی قرار گرفت.

مواد و روش ها

مواد مورد نیاز: مواد شیمیایی مورد نیاز برای سنتز جاذب مغناطیسی، شامل نیترات آهن (Fe(NO₃)₃.9H₂O)، کربن فعال پودری(PAC) و اسید نیتریک (۶۵٪ HNO³) که از شرکت مرک آلمان تهیه گردید. پودر آموکسی سیلین نیز از شرکت داروسازی رازی، تهران تهیه گردید.

سنتز نانو ذرات مغناطيسي Fe₃O₄-کربن فعال: جاذب مغناطيسي با استفاده از روش هم ترسیبی مطابق روش ارائه شده توسط Liu و همکاران (۲۰۱۱) اما با اندکی تغییرات تهیه گردید(۲۶). در این روش، مقدار 8 ۵/۰ از یودر کربن فعال در ۲۰mL اسید نیتریک ۶۵٪ اشباع و به منظور هموژن سازی محلول به مدت ($^\circ C$ در داخل دستگاه حمام التراسونیک (تحت دمای $h^\circ \Lambda$ قرار داده شد. سپس نمونه فیلتر شد و پودر حاصله به ۲۰۰ mL محلول نيترات آهن ۶/۴ Fe(N0₃)₃.9H₂O g/L اضافه گرديد و پس از هموژن سازی مجدد توسط حمام التراسونیک به کمک فیلتر کاغذی واتمن ۴۱ صاف شد. Mohan و همکاران (۲۰۱۱) و Liu و همکاران (۲۰۱۱) از کلرید آهن (III) و اسید سولفوریک در این زمینه استفاده کردند(۲۰ و۲۶). در مرحله بعد نمونه در داخل کوره الکتریکی تحت گاز نیتروژن طی مدت زمان h و دمای $^{\circ}C$ ، ۷۵۰ قرار داده شد. در نهایت جاذب سنتز شده قبل از استفاده چندین بار با آب مقطر شستشو داده شد و در مجاورت آهنربای خارجی جداسازی گردید. سپس در دمای [°]C داخشک و برای استفاده در داخل دسیکاتور نگهداری شد.

مشخصههای جاذب سنتز شده: به منظور بررسی مورفولوژی $\operatorname{Fe}_3 \mathcal{O}_4$ سطح جاذب و شکل و سایز نانو ذرات مغناطیسی

دوره منتم. شماره اول . بهار ۱۳۱۳ فصلنامه علمی پژوهشی انجمن علمی بهداشت محیط ایر ان

در این روابط q_e میلی گرم آموکسی سیلین جذب شده روی گرم جاذب C_o ،C_e به ترتیب غلظت اولیه و تعادلی آموکسی سیلین بعد از جذب سطحیM ، V (mg/L)نیز به ترتیب جرم جاذب (g) و حجم محلول (L) هستند.

بهینهسازی پارامترهای جذب: در مطالعه حاضر ابتدا محدوده pHبین ۱۱–۳ (۱۱–۹–۷–۹–۳) با استفاده از ۵ نمونه ۵۰ mL محلول آموکسی سیلین با غلظت ۵۰ mg/L و مقدار ۱ g/L نانو ذرات مغناطیسی AC-Fe₃O₄ مورد مطالعه قرار گرفت. سپس با استفاده از pH بهینه و غلظت آموکسی سیلین mg/L ۱۰۰و دز جاذب ۱<u>۶</u>/L ، زمان تماس در یک دوره ۱۸۰ دقیقه ای تحت دمای C °C مطالعه و زمان تعادل مشخص گردید. از نتایج این مرحله معادلات سینتیکی جذب حاصل شد. در مرحله بعد در pH و زمان تماس بهینه و دمای C ۳۰° تاثیر غلظت های مختلف نانو ذرات مغناطیسی AC-Fe₃O₄ (۱, ۲, ۳، ۴ و g/L۵) و آموکسی سیلین(۵۰، ۱۰۰، ۱۵۰، ۲۰۰، ۲۵۰ و ۳۰۰ mg/L)، مطالعه و به دنبال آن ایزوترم های تعادلی فرآیند جذب بررسی گردید. در مرحله آخر برای تعیین دمای بهینه و همچنین مطالعه ترمودینامیک، فرآیند جذب در سه درجه حرارت ۲۰، ۳۵ و C°۵۰ انجام گردید. در هر دما از ۶ نمونه محلول حاوى غلظت هاى مختلف آموكسى سيلين با مقدار جاذب،pH و زمان تماس بهینه استفاده شد. برای تنطیم دما و سرعت همزن از شیکر-انکوباتور استفاده شد. در کلیه مراحل آزمایش از نمونه های با غلظت مشابه از آموکسی سیلین بدون جاذب به عنوان شاهد استفاده شد.

ایزوترم جذب: ایزوترم های جذب داده های تعادلی هستند که به منظور تشریح چگونگی واکنش بین ماده جذبشونده و جاذب مورد استفاده قرار می گیرند. ایزوترم ها همچنین بیانکننده ظرفیت جذب یک جاذب هستند. در مطالعه حاضر به منظور بررسی تحلیل داده های تجربی و توصیف حالت تعادل در جذب بین فاز جامد و مایع از مدل های ایزوترم لانگمیر و فروندلیچ استفاده شد. مدل ایزوترم لانگمیر بیانگر جذب یک لایه ای و یکنواخت (همگن) ماده جذب شونده با انرژی یکسان بر روی تمام سطوح جاذب بوده و همچنین بیان می کند که تمامی مکان های جذب دارای پیوستگی یکسانی نسبت به مولکول های ماده جذب شونده بوده و هیچ گونه فرایند

انتقالی از مواد جذب شونده در سطح جاذب اتفاق نمی افتد. در حالیکه معادله تجربی ایزوترم فروندلیچ بر مبنای جذب چند لایه ی، غیر یکنواخت و ناهمگن ماده جذب شونده روی جاذب است. معادله خطی این دو ایزوترم تعادلی به صورت

زیر بیان می گردد:

مدل لانگمير

(٣)

(٤)

 $\frac{C_e}{q_e} = \frac{1}{k_l q_0} + \frac{1}{q_0} C_e$

مدل فروندليچ

 $\ln q_e = \ln k_F + \frac{1}{n} \ln C_e$

در این معادلات C_e غلظت تعادلی آموکسی سیلین مقدار آموکسی سیلین جذب شده در زمان تعادل (mg/L) $q_{
m e}$ و mg/g) q_{0} احداکثر ظرفیت جذب (mg/g) و mg/g ثابت لانگمیر (L/mg) هستند. مقادیر $q_{o} q_{o}$ و k_{L} به ترتیب از طریق $C_{\rm e}$ مداء و شيب نمودار خطی $C_{\rm e}/q_{\rm e}$ در مقابل عرض از مبداء و محاسبه می شوند.($K_{\rm F}~(mg/g(L/mg^{-1/n}))$ و n نیز ثابت های فروندلیچ وابسته به ظرفیت و شدت جذب هستند که مقادیر n کمتر از یک، نشان دهنده جذب ضعیف و مقادیر ۲–۱ و ۲۰–۲ نیز به ترتیب بیانگر جذب متوسط و مطلوب هستند(۲۷). در معادله (۴) پارامترهای n و k_L به ترتیب از شیب و عرض از مبداء نمودار خطی lnq_e در مقابل nC_e تعیین مقدار می شوند. نوع مطلوبیت فرآیند جذب در مدل لانگمیر می تواند با استفاده از مقادیر فاکتور بدون بعد R مشخص شود (معادله ۵)، به طوری که مقادیر $||S| > 1 = R_{L}$ نامطلوب، $|S| = R_{L}$ جذب خطی، _L = ۰ جذب برگشت ناپذیر و ۱ < R + ۰ جذب مطلوب را نشان می دهد(۲۸):

$$R_L = \frac{1}{1 + k_L C_0} \tag{0}$$

سینتیک جذب: به منظور بررسی عوامل موثر بر سرعت واکنش، مطالعه سینتیک فرآیند ضروری است. از این رو در تحقیق حاضر از معادلات سینتیکی شبه درجه اول و شبه درجه دوم استفاده شد. معادله سینتیکی شبه درجه اول بر مبنای در اینجا R ثابت جهانی گازها (L/g) K مقدار آموکسی سیلین حرارت محلول (K) و $(K) (K_d)$ نسبت مقدار آموکسی سیلین جذب شده روی جاذب(mg/g) به مقدار باقی مانده آن در محلول ((mg/L) هستند. مقادیر ΔH^0 و ΔS^0 به ترتیب از طریق شیب و عرض از مبداء معادله حاصل از نمودار خطی Ln k_d می توان با استفاده از رابطه زیر تعیین نمود.

$$\Delta G^0 = -RT \ln k_L \tag{(1)}$$

يافتهها

pH بهینه جذب آموکسی سیلین: شکل ۳(الف) تاثیر pH های مختلف را بر میزان جذب آموکسی سیلین توسط کربن فعال مغناطیسی در زمان min ۶۰ نشان می دهد. بالاترین بازدهی جذب در pH ۵ بوده و کمترین و بیشترین ظرفیت جذب به ترتیب مربوط به pH های ۳ و۵ بوده که برابر با ۲۸/۱۲۹ وروه mg/8 است. بنابراین pH ۵ به عنوان pH بهینه انتخاب و برای مطالعه آزمایشات بعدی فرآیند جذب مورد استفاده قرار گرفت. ظرفیت جاذب بوده و زمانی که جذب سطحی با استفاده از مکانیسم نفوذ از داخل یک لایه مرزی اتفاق افتد، کاربرد دارد. در حالی که معادله سینتیکی شبه درجه دوم نشان می دهد که جذب شیمیایی مکانیسم غالب و کنترل کننده در فرایند جذب سطحی بوده و بر مبنای جذب فاز جامد همچنین بیان می کند که جذب شیمیایی مرحله کندکننده فرایند جذب سطحی است(۳۰–۲۹). معادلات خطی دو مدل سینتیکی مذکور به

صورت زير بيان مي شوند:

 $\ln(q_e - q_t) = \ln q_e - k_1 t$ (٦) مدل شبه درجه اول

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t$$
 (۷) مدل شبه درجه دوم (۷)

ترمودینامیک جذب: سه پارامتر ترمودینامیکی که در مطالعه فرآیند جذب بایستی بررسی و تعیین مقدار گردند، عبارتند از: انرژی آزاد استاندارد (ΔG⁰)، آنتالپی استاندارد (ΔH⁰) و آنتروپی استاندارد(ΔS⁰). مقادیرΔH⁰ و ΔS⁰ با استفاده از روابط زیر به دست می آیند.

$$\ln k_d = \frac{\Delta S^0}{R} - \frac{\Delta H^0}{RT} \tag{(A)}$$

$$K_d = \frac{q_e}{C_e} \tag{9}$$

زمان تماس بهینه جذب آموکسی سیلین: تاثیر زمان تماس بر ظرفیت جذب آموکسی سیلین روی نانوذرات AC-Fe₃O₄ در PH بهینه ۵ در شکل ۳(ب) نمایش داده شده است. مشاهده می شود که با افزایش زمان تماس جذب آموکسی سیلین روند ۹۰ min می شود که با افزایش زمان تماس جذب آموکسی سیلین روند با غلظت اولیه ۵۰ mg/ موکسی سیلین ۶/۳ mg/ بوده و در ادامه با افزایش زمان از ۹۰ تا ۱۸۰ min ظرفیت جذب برای همان غلظت اولیه تقریبا ثابت و برابر با ۶/۸۹ mg/ بوده است. بنابراین زمان ادامه آزمایشات جذب مورد استفاده نظر گرفته شد و برای ادامه آزمایشات جذب مورد استفاده

قرار گرفت. تاثیر غلظت اولیه آموکسی سیلین و جاذب: تاثیر غلظت های مختلف جاذب و ماده جذب شونده در ۵= PH و زمان تماس مختلف جاذب و ماده جذب شونده در ۵= PH و زمان تماس ۹۰ min در شکل ۴(الف) ارایه شده است. نتایج نشان داد که با افزایش غلظت اولیه آموکسی سیلین از ۵۰ به ۲۸/۲ همان ۱۹زایش غلظت اولیه آموکسی سیلین از ۴۰ به ۲۸/۶۶ ۱۹زایش و راندمان حذف از ۹۵/۶٪ به ۴۴/۲۲ ٪ کاهش می یابد. از طرفی دیگر راندمان حذف در غلظت اولیه آموکسی سیلین ۱۰ mg/L می دیگر راندمان حذف در غلظت اولیه آموکسی سیلین افزایش می یابد، در حالی که ظرفیت جذب برای همان غلظت

شکل ۲: تصویر SEM جاذب(الف)، تصویر TEM جاذب (ب)، الگوی پراکنش اشعه ایکس مربوط به $Fe_{3}O_{4}$ (ج).

شکل ۳: تاثیر pH (الف) و زمان تماس (ب) بر فرآیند جذب آموکسی سیلین توسط Fe₃O₄ –AC برای غلظت اولیه ۵۰ mg/L آموکسی سیلین و دز جاذب ۱ g/L تحت دمای^{C ،}۲۰^۰ نحوه جداسازی جاذب از محلول توسط آهنربا (داخل شکل ۳الف)

الله المحركين المحافي الم المحركين المحرك الم الم

و همان دزهای جاذب از ۴۸/۷ به mg/g ۱۰ کاهش می یابد. تاثیر دما بر جذب آموکسی سیلین: تاثیر دما روی میزان جذب آموکسی سیلین در دما و غلظت های اولیه مختلف تحت شرایط بهینه PH ۵ ، زمان تماس برابر با min ۹۰ و مقدار جاذب برابر با L/g ۱ در شکل ۴(ب) نشان داده شده است. مشاهده می شود که با افزایش دما در کلیه غلظت های آموکسی سیلین کارایی حذف به طور نسبی کاهش می یابد، برای مثال در غلظت اولیه mg/L با افزایش دما از ۲۰ به ۳۵ و سپس Mg/t کاهش می یابد.

-50 mg/L

←150 mg/L

≭−250 mg/L

دز جاذب (گرم در لیتر)

2

4

6

ایزوترم، سینتیک و ترمودینامیک جذب: نتایج به دست آمده پارامترهای ایزوترم جذب مربوط به معادلات لانگمیر و فروندلیچ در دماهای مختلف در جدول ۱ ارایه شده است. مقادیر پارامترهای سینتیکی جذب آموکسی سیلین نیز در جدول ۲ نمایش داده شده است. در شکل(۵) منحنی های مربوط به مدل های سینتیکی شبه درجه اول و دوم ارائه شده است. در مطالعه ترمودینامیک فرایند جذب و محاسبه پارامترهای وابسته به آن، مقادیر ΔH^{0} برابر با (kJ/mol) ۲۰/۰۱ و مقادیر ΔG° برای هر سه دما (۲۰ Γ و 0° ۰۵) منفی و به ترتیب برابر با رابر با (kJ/mol) ۶/۵۰ و همچنین ΔS° منفی و با برابر با (kJ/mol) ۶/۵۰ و محچنین ΔS° منفی و

شکل ۴: تاثیر غلظتهای مختلف آموکسی سیلین و جاذب (الف) و دما (ب) بر میزان جذب آموکسی سیلین روی AC-Fe₃O₄ در۵= pH و زمان تماس ۹۰ min

120

100

80

60

40

20

0 + 0

كارايي حذف (٪)

شکل ۵: منحنی سینتیک شبه درجه اول(الف) و شبه درجه دوم (ب) برای جذب آموکسی سیلین روی AC– Fe₃O₄

دوره منتم، شماره اول . بهار ۱۳۱۳ فصلنامه علمی پژوهشی انجمن علمی بهداشت محیط ایران

جدول ۱: پارامترهای ایزوترم های تعادلی جذب آموکسی سیلین روی AC-Fe ₃ O4											
مدل ايزوترم											
فروندليج			لانگمىر				(°C)				
\mathbb{R}^2	n	$k_F(mg/g)(L/mg)^{1/n}$	\mathbb{R}^2	R _L	$K_L(L/mg)$	$q_0 (mg/g)$					
•/9977	۴/ ۳۸	49/40	•/9110	•/•44-•/710	•/•٧٣	148/91	۲.				
•/٩٩•١	۳/۸۷	41/4	•/9140	•/•98-•/880	•/•۵	140/14	۳۵				
•/997٨	۳/۷۱	20/28	•/9114	•/•٧٢-•/٣١٧	•/•**	188/40	۵۰				

$\operatorname{AC-Fe_3O_4}$ جدول ۲: مقادیر پارامترهای سینتیکی فرایند جذب آموکسی سیلین روی										
مدل سينتيكي										
		شبه درجه دوم			شبه درجه اول					
	R ²	k ₂ (g/mg)(min ⁻¹)	$q_{e,cal}(mg/g)$	R ²	K _l (min ⁻¹)	$q_{\text{e,cal}}(mg/g)$				
+/٩	٩٩	+/++9	FA/VA	+1909	+/+F	10/+9	4V/A			

بحث

تاثیر pH بر کارایی حذف آموکسی سیلین: از آنجایی که مولکولهایآموکسی سیلین طبیعتی آمفوتریک داشته و دارای نقطه ایزوالکتریک برابر با ۵/۲ بوده، بنابراین pH فاز محلول، تعيين كننده حالت يونيزاسيون مولكول هاي أموكسي سيلين است و بسته به مقادیر pH ممکن است، دارای بار مثبت یا منفى و يا خنثى باشد(٣١). در شكل ٣ (الف) مشاهده مي شود که بالاترین بازدهی حذف آموکسی سیلین در pH ۵ بوده که به pH نقطه ایزوالکتریک نزدیک است و این بیان می کند که مولکول های آموکسی سیلین در حالت خنثی و به وسيله واكنش هاي الكترواستاتيكي (هيدروفوبيك) روى كربن فعال جذب شدهاند، بنابراین می توان گفت که در این حالت مكانيسم غالب در محيط آبي، واكنش هاي الكترواستاتيكي بوده است. مشابه این پدیده در مطالعه Ornelas و همکاران (۲۰۱۰) در جذب آموکسی سیلین روی کربن فعال مشاهده شده است(۳۱). Liu و همکاران (۲۰۱۱) و Ornelas و همکاران (۲۰۱۰) در حذف آنتی بیوتیک های نورفلوکساسین و آموکسی سیلین با استفاده از کربن فعال، به ترتیب pH های ۵/۵ و ۵/۶ را به عنوان PH بهینه گزارش کردند (۳۱و ۳۲). در شکل ۳ (الف) همچنین مشاهده می شود که، بازدهی حذف از pH تا pH ۵ افزایش پیدا کرده است، این روند

ممکن است به دلیل تغییر گروه های کربوکسیل (COOH-) موجود در ساختار مولکولی آموکسی سیلین به کربوکسیلات (-COO-) بوده که متعاقب آن جاذبه الکترواستاتیکی بین مولکول های آنیونی آموکسی سیلین (-COO-) و سطح دارای بار مثبت کربن فعال افزایش یافته و بنابراین بازدهی حذف افزایش پیدا کرده است(۳۳). اما کاهش بازدهی حذف در Hqهای قلیایی می تواند ناشی از دافعه الکترواستاتیکی بین سطح دارای بار منفی کربن فعال و آنیون ها برای جذب بر روی جایگاه های فعال روی سطح جاذب باشد(۵۳-۳۳). در روند کاهشی داشته است. این حالت احتمالاً به دلیل افزایش تشکیل هیدروکسیدها (-ON) و رقابت شدید بین آن ها و آنیون های -OOO- موجود در مولکول های آموکسی سیلین برای جذب روی مکان های فعال موجود در سطح کربن فعال باشد(۵۳و ۳۶).

تاثیر زمان تماس بر کارایی حذف آموکسی سیلین: مقدار جذب آموکسی سیلین درطی زمان تماس ۳۰ min اول خیلی بیشتر و سریع تر از زمان های بعدی بود. به طوری که در شکل ۳(ب) مشاهده می شود در min ۳۰ ابتدایی منحنی شیب تندی را داشته و سپس با افزایش زمان تماس شیب این منحنی کندتر نشان مي دهد كه افزايش غلظت اوليه آموكسي سيلين بر روي كارايي حذف تاثير منفى داشته، يعنى با افزايش غلظت اوليه آلاینده، راندمان جذب کاهش یافته، که امری طبیعی است، زیرا با افزايش غلظت اوليه آلاينده، مقدار باقي مانده أن نيز افزايش می یابد و بنابراین راندمان حذف آن کاهش می یابد و علت دیگر آن اشباع شدن سطح جاذب در غلظت های بالای آنتی بیوتیک است. مشابه این نتایج در مطالعات قبلی نیز مشاهده شده است(۳۶). به طور کلی در یک غلظت مشخص از جاذب، با افزایش غلظت محلول، درصد جذب و مقدار ماده جذب شده به ترتیب کاهش و افزایش می یابد. در غلظت های اولیه پايين تر آموكسي سيلين نسبت تعداد اوليه مولكول هاي ماده جذب شونده نسبت به جایگاه های فعال در دسترس کم است و در نتیجه مقدار جذب مستقل از غلظت اولیه خواهد بود. اما در غلظت های بالاتر ماده جذب شونده، میزان دسترسی به مكان هاي جذب كمتر و لذا حذف أموكسي سيلين وابسته به غلظت اوليه خواهد بود(۴۱و ۴۲).

نتیجه مطالعه حاضر همچنین نشان داد که افزایش غلظت اولیه آموکسی سیلین تاثیر مثبت روی ظرفیت جذب داشته، به طوریکه با افزایش غلظت اولیه آموکسی سیلین از ۵۰ به ۲۰۰ mg/L ۲۰۷۰ در غلظت ۱/۶ ۱ جاذب، ظرفیت جذب از ۴۸/۷ به 2/8m ۱۳۲/۶۶۵ رسیده است. که دلیل آن، افزایش نیروی رانشی ناشی از افزایش تعداد مولکول های آموکسی سیلین (گرادیان غلظت) است(۳۴و ۴۴).

ایزوترمهای جذب

نتایج به دست آمده از پارامترهای ایزوترمهای تعادلی جذب در جدول ۱ نشان می دهد که رفتار جذب آموکسی سیلین بر روی $AC-Fe_3O_4$ از هر دو مدل فروندلیچ و لانگمیر پیروی می کند. همچنین مشاهده می شود که مقادیر به دست آمده از n در مدل فروندلیچ در هر سه درجه حرارت، بالاتر از ۲ و بین ۱۰-۲ بوده، که نشان دهنده جذب مطلوب آموکسی سیلین بر روی کربن فعال مغناطیسی است. از طرفی دیگر در مدل لانگمیر مقادیر به دست آمده برای R_L در هر سه درجه حرارت مطالعه شده بین صفر و یک بوده که این نیز بیانگر جذب نوع مطلوب است. لذا جذب آموکسی سیلین روی شده و در نهایت بعد از ۹۰ min تقریباً ثابت شده است. در زمان تماس های بعد از ۹۰ min تغییرات قابل ملاحظه ای در مقدار آموكسي سيلين جذب شده مشاهده نمي شود. اين امر می تواند ناشی از پر شدن منافذ جاذب و یا دسترسی مشکل مولکول های آموکسی سیلین به مکان های فعال روی سطح جاذب باشد و مشابه این مشاهدات در مطالعه محققان دیگر نيز گزارش شده است(۱۶و۳۷). اما جذب سريع آنتي بيوتيک در زمان های تماس ابتدایی می تواند به دلیل وجود مساحت سطحی بالای جاذب $(AC-Fe_3O_4)$ بوده، که می تواند جایگاه های فعال زیادی را در دسترس مولکول های آموکسی سیلین قرار دهد(۳۸). Moussavi و همکاران (۲۰۱۳) نیز در مطالعه ای پیرامون حذف آموکسی سیلین توسط کربن فعال استاندارد، زمان تعادل را برای حذف ۹۵ و ۹۸٪ غلظت های اولیه به ترتیب ۵۰ و ۱۰۰ mg/L آموکسی سیلین ۱۰۰ Min گزارش کردند (۳۶) که با نتایج به دست آمده در تحقیق حاضر مطابقت دارد.

در تحقیق Homem و همکاران (۲۰۱۰) برای جذب آموکسی سیلین روی خاکستر پوست بادام زمان تعادلی ۲۸ مشاهده شده است(۳۳). این اختلاف زمان تعادل ممکن است به دلیل تفاوت در غلظت های اولیه آنتی بیوتیک باشد. زیرا با افزایش غلظت اولیه ماده جذب شونده راندمان حذف کاهش و زمان رسیدن به تعادل نیز کوتاه تر می گردد و بر عکس با کاهش غلظت اولیه، شانس برخورد مولکول های ماده جذب شونده با سطح جاذب کم شده و نهایتاً رسیدن به زمان تعادل نیازمند افزایش تماس است(۳۹).

تاثیر غلظت اولیه آموکسی سیلین و مقدار جاذب: همانگونه که در شکل(lib) مشاهده می شود افزایش مقدار جاذب ($AC-Fe_3O_4$) با افزایش کارایی حذف همراه است. این امر ممکن است ناشی از افزایش سطح جاذب و یا افزایش دسترسی مولکول های آموکسی سیلین به منافذ کربن فعال بوده باشد(۴۰). اما تاثیر آن روی ظرفیت جذب منفی بوده، به گونه ای که با افزایش غلظت جاذب از ۱ به J/g ۵ در به گونه ای که با افزایش غلظت جاذب از ۱ به J/g ۵ در غلظت اولیه J/g ۳ ۵، ظرفیت جذب از ۱ به J/g ۵ در می رسد، که ممکن است به دلیل اشباع نشدن جایگاه های فعال جاذب در طول فرآیند جذب باشد. شکل ۴ الف همچنین

¥9 ----- \$ دوره هفتم، شماره اول ، بهار ۱۳۹۳ فصلنامه علمى پژوهشى انجمن علمى بهداشت محيط اير ان

است. در جدول ۱ همچنین مشاهده می شود که ضریب همبستگی برای هر دو مدل و در هر سه دما (۲۰×/۰/۹) بوده است.Putra و همکاران (۲۰۰۹) در مطالعه جذب آموکسی سیلین توسط بستر کربن فعال گرانولی هر دو مدل ایزوترم های فروندلیچ و لانگمیر را مناسب گزارش کردند(۱۹). Liu و همکاران (۲۰۱۱) در مطالعه جذب آنتی بیوتیک سفالکسین توسط کربن فعال، مدل فروندلیچ و Liu و همکاران (۲۰۱۱) در مطالعه فعال، مدل فروندلیچ و Liu و همکاران (۲۰۱۱) در مطالعه جذب نورفلوکساسین با استفاده از کربن فعال، مدل لانگمیر را با حداکثر ظرفیت Budyanto و همکاران (۲۰۰۹) نمودند(۱و ۳۲). در مطالعه میلین توسط کربن فعال، مدل ایزوترم پیرامون جذب آموکسی سیلین توسط کربن فعال، مدل ایزوترم لانگمیر برای فرایند جذب مناسب گزارش شد(۴۵).

در مطالعه حاضر حداکثر ظرفیت جذب بر مبنای مدل لانگمیر در دمای⁰° ۲۰ برابر با ۱۳۶/۹۸ mg/g به دست آمد. Putra و همكاران (۲۰۰۹) در مطالعه جذب آموكسي سيلين توسط كربن فعال گرانولی حداکثر ظرفیت جذب را براساس مدل لانگمیر در PH بهینه ۴/۹۸، ۲۲۱/۸۶۸ mg/g ۴/۹۸ بیان داشته اند(۱۹). لذا این تفاوت بیان می کند که کربن فعال استفاده شده در مطالعه Putra نسبت به کربن فعال مغناطیسی شده در تحقیق حاضر از کارایی بهتری بر خوردار بوده است. در تحقیق Putra مقادیر ثابت های لانگمیر $(k_{
m L})$ و فروندلیچ $(k_{
m F})$ به ترتیب برابر با ۰/۰۳ و ۱۲/۲ به دست آمد در حالی که مقادیر این پارامترها در تحقیق حاضر به ترتیب برابر با ۰/۰۷ و ۳۹/۳۷ حاصل شد(۱۹). با توجه به این که هر چه مقادیر دو ثابت فوق بزرگ تر باشد، جذب مطلوب تری صورت می گیرد، بنابراین نتیجه می شود که کربن فعال مغناطیسی شده با نانو ذرات Fe₂O دارای ظرفیت جذب مطلوبی نسبت به کربن فعال گرانولی در تحقيق Putra است.

سینتیک های جذب

مقادیر به دست آمده از ضریب همبستگی مدل های سینتیکی فرایند جذب آموکسی سیلین بر روی نانو ذرات مغناطیسی در جدول ۲ بیانگر این مطلب است که فرآیند جذب از مدل سینتیکی شبه درجه دوم پیروی می نماید. همچنین منحنی های ارایه شده در شکل ۵ نشان می دهند که داده های تجربی حاصل از آزمایشات جذب با معادله سینتیکی شبه درجه دوم

از تناسب بالایی برخوردار بوده و داده ها با این مدل بهتر توصيف مي شوند. در جدول ۲ همچنين مشاهده مي شود که ظرفیت جذب محاسباتی (cal= ۴۸/۷۸ وq) حاصل از مدل شبه درجه دوم نسبت به مدل شبه درجه اول (cal= ۱۵/۰۶ و ، به ظرفیت جذب تجربی (۹/۸) =expو (q_e) حاصل از (q_e) آزمایشات تجربی نزدیک تر است و بنابراین نتیجه می شود که مکانیسم غالب در فرایند جذب آموکسی سیلین روی کربن فعال مغناطیسی، جذب شیمیایی است (۴۶). مدل سینتیکی شبه درجه دوم همچنین بیان می کند که دو واکنش، اولی سریع که به سرعت به تعادل مي رسد و دومي كه سرعت كمتري داشته و تا زمان طولانی تری ادامه می یابد، به صورت موازی در فرایند جذب آموکسی سیلین روی کربن فعال مگنتیت موثربوده اند. مطالعات انجام شده در جذب آنتي بيوتيک ها با استفاده از کربن فعال نیز مدل سینتیکی شبه درجه دوم را با ضریب همبستگی R'>٠/٩٩٩ به عنوان مدل مناسب گزارش کرده اند(۱و ۳۲). در تحقيق Putra و همكاران (۲۰۰۹) پيرامون جذب آموكسي سیلین بر روی کربن فعال گرانولی، رفتار جذب آموکسی سیلین در واحد زمان بر مبنای معادله سینتیکی شبه درجه دوم گزارش شده است (۱۹). Moussavi و همکاران (۲۰۱۳) مقادیر ثابت سرعتk مربوط به معادله سینتیکی شبه درجه دوم را برای جذب(mg/L) ۵۰ آموکسی سیلین روی کربن فعال، ۰/۰۰۸ گزارش کرد، در حالی که مقادیر این پارامتر در تحقيق حاضر برابر ٠/٠٠٩ تعيين شد. اين تفاوت حاكي از آن است که سرعت حذف آموکسی سیلین توسط کربن فعال مغناطیسی در این تحقیق به مراتب بیشتر از سرعت حذف آن توسط کربن فعال در تحقیق Moussavi است(۳۶).

ترموديناميک جذب

مقادیر منفی به دست آمده برای پارامترهای $\Delta H^{\circ} e^{\circ} \Delta G$ به ترتیب بیانگر اگزوترمیک و خودبخودی (امکان پذیر) بودن فرآیند جذب آموکسی سیلین توسط AC-Fe O_{\circ} است. Homem و همکاران (۲۰۱۰) در مطالعه جذب آموکسی سیلین روی خاکستر پوست بادام، مقادیر $\Delta H^{\circ} e^{\circ} \Delta C$ را منفی گزارش نمودند، همچنین XU و همکاران (۲۰۱۱) یافتند که با افزایش دمای محلول ظرفیت جذب آنتی بیوتیک های تتراسایکلین و سولفامتازین کاهش می یابد (۹و ۲۳). کاهش

مقادیر ΔG° با افزایش دما نیز نشان می دهد که فرآیند جذب در دماهای بالاتر نامطلوب است. مقادیر منفی به دست آمده ΔS° ، نیز نشاندهنده کاهش بی نظمی با افزایش دما در فاز مشترک جامد و مایع در طول فرآیند جذب است.

نتيجه گيري

حذف آنتی بیوتیک آموکسی سیلین با استفاده از کربن فعال مغناطیسی با افزایش مقدار جاذب و زمان تماس افزایش و با افزایش غلظت اولیه آموکسی سیلین و دما، کاهش می یابد. شرايط بهينه جذب عبارتند از: pH ۵، زمان تماس ۹۰ min ، مقدار جاذب ۶/L۱ و دمای ۲۰°C. حداکثر ظرفیت جذب بر طبق مدل لانگمیر برابر با ۱۳۶/۹۸ mg/g بود. مطالعه ایزوترم های تعادلی فروندلیچ و لانگمیر در دماهای مختلف نشان داد که فرآیند جذب آموکسی سیلین بر روی جاذب مطالعه شده، به خوبی و با ضریب همبستگی بالای ۱۹۸۸ از هر دو مدل پیروی می کند. نتایج حاصل از معادلات سینتیکی نیز نشان داد که رفتار جذب آموکسی سیلین در واحد زمان از مدل سینتیکی شبه درجه دوم تبعیت می کند. همچنین مقادیر به دست آمده پارامترهای ترمودینامیکی نشان داد که جذب آموکسی سیلین روی کربن فعال مگنتیت، طبیعتی اگزوترمیک و خودبخودی داشته است. بنابراین با توجه به دامنه وسیع استفاده از کربن فعال پودری در حذف انواع آلاینده های آلی و سمی از محیط های آبی، مغناطیسی نمودن آن با روش استفاده شده در مطالعه حاضر، با هدف تسريع عمل جداسازي و عدم نياز به فیلتراسیون، می تواند به عنوان یک روش اقتصادی، کارآمد و قابل اطمينان به كار رود.

تشکر و قدردانی

این مقاله حاصل (بخشی از) پروژه کارشناسی ارشد با عنوان سنتز و کاربرد کربن فعال مغناطیسی در حذف آلاینده ها از محیط های آبی است که با حمایت دانشگاه علوم پزشکی و خدمات بهداشتی، درمانی تهران و ستاد ویژه توسعه فناوری نانو اجرا شده است.

Downloaded from ijhe.tums.ac.ir on 2024-07-17]

دوره هفتم، شماره اول ، بهار ۱۳۹۳ فصلنامه علمى پژوهشى انجمن علمى بهداشت محيط اير ان

- 1-Liu H, Liu W, Zhang J, Zhang C, Ren L, Li Y. Removal of cephalexin from aqueous solutions by original and Cu (II)/Fe (III) impregnated activated carbons developed from lotus stalks Kinetics and equilibrium studies. Journal of Hazardous Materials. 2011;185(2):1528-35.
- 2-Andreozzi R, Canterino M, Marotta R, Paxeus N. Antibiotic removal from wastewaters: the ozonation of amoxicillin. Journal of Hazardous Materials. 2005;122(3):243-50.
- 3-Boyd GR, Reemtsma H, Grimm DA, Mitra S. Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Science of the Total Environment. 2003;311(1):135-49.
- 4-Heberer T. Tracking persistent pharmaceutical residues from municipal sewage to drinking water. Journal of Hydrology. 2002;266(3):175-89.
- 5-Douša M, Hosmanová R. Rapid determination of amoxicillin in premixes by HPLC. Journal of Pharmaceutical and Biomedical Analysis. 2005;37(2):373-77.
- 6-Zhang G, Ji S, Xi B. Feasibility study of treatment of amoxillin wastewater with a combination of extraction, Fenton oxidation and reverse osmosis. Desalination. 2006;196(1–3):32-42.
- 7-Trovó AG, Pupo Nogueira RF, Agüera A, Fernandez-Alba AR, Malato S. Degradation of the antibiotic amoxicillin by photo-Fenton process–chemical and toxicological assessment. Water Research. 2011;45(3):1394-402.
- 8-Li S-Z, Li X-Y, Wang D-Z. Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics. Separation and Purification Technology. 2004;34(1):109-14.
- 9-XuL, Dai J, Pan J, Li X, Huo P, Yan Y, et al. Performance of rattle-type magnetic mesoporous silica spheres in the adsorption of single and binary antibiotics. Chemical Engineering Journal. 2011;174(1):221-30.
- 10-Akmehmet Balcıoğlu I, Ötker M. Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes. Chemosphere. 2003;50(1):85-95.
- 11-Adriano W, Veredas V, Santana C, Gonçalves L. Adsorption of amoxicillin on chitosan beads: Kinetics, equilibrium and validation of finite bath models. Biochemical Engineering Journal. 2005;27(2):132-37.
- 12-Dutta M, Baruah R, Dutta N. Adsorption of 6-aminopenicillanic acid on activated carbon.

Separation and Purification Technology. 1997;12(2):99-108.

- 13-Li K, Yediler A, Yang M, Schulte-Hostede S, Wong MH. Ozonation of oxytetracycline and toxicological assessment of its oxidation by-products. Chemosphere. 2008;72(3):473-78.
- 14-Shen S, Ren J, Chen J, Lu X, Deng C, Jiang X. Development of magnetic multiwalled carbon nanotubes combined with near-infrared radiation-assisted desorption for the determination of tissue distribution of doxorubicin liposome injects in rats. Journal of Chromatography A. 2011;1218(29):4619-26.
- 15-Iram M, Guo C, Guan Y, Ishfaq A, Liu H. Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres. Journal of Hazardous Materials. 2010;181(1):1039-50.
- 16-Ahmad MA, Alrozi R. Removal of malachite green dye from aqueous solution using rambutan peel-based activated carbon: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal. 2011;171(2):510-16.
- 17-Qu S, Huang F, Yu S, Chen G, Kong J. Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2O3 particles. Journal of Hazardous Materials. 2008;160(2):643-47.
- 18-Huang L, Sun Y, Wang W, Yue Q, Yang T. Comparative study on characterization of activated carbons prepared by microwave and conventional heating methods and application in removal of oxytetracycline (OTC). Chemical Engineering Journal. 2011;171(3):1446-53.
- 19-Putra EK, Pranowo R, Sunarso J, Indraswati N, Ismadji S. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics. Water Research. 2009;43(9):2419-30.
- 20-Mohan D, Sarswat A, Singh VK, Alexandre-Franco M, Pittman Jr CU. Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chemical Engineering Journal. 2011;172(2):1111-25.
- 21-Fuertes AB, Tartaj P. A facile route for the preparation of superparamagnetic porous carbons. Chemistry of Materials. 2006;18(6):1675-79.
- 22-Shokohi R, Samarghandi M, Pourfarzi F, Shirzad Siboni M. Removal of Reactive Black 5 (RB5) dye from aquatic solution by using of adsorption onto synthesized sodium alginate magnetic beads. Iranian Journal of Health and Environment. 2011;4(1):1-10 (in Persian).
- 23-Khodabakhshi A, Amin M.M, Mozaffari M, Bina B. Removal of Cr(VI) from simulated electroplating wastewater by maghemite nanoparticles. Health

الم المحمد فصلنامه علمى پژوهشى انجمن علمى بهداشت محيط ايران

System Research. 2010;6:935-44 (in Persian).

- 24-Yang N, Zhu S, Zhang D, Xu S. Synthesis and properties of magnetic Fe3O4 activated carbon nanocomposite particles for dye removal. Materials Letters. 2008;62(4):645-47.
- 25-Ai L, Zhou Y, Jiang J. Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance. Desalination. 2011;266(1):72-77.
- 26-Liu Z, Zhang F-S, Sasai R. Arsenate removal from water using Fe3O4 loaded activated carbon prepared from waste biomass. Chemical Engineering Journal. 2010;160(1):57-62.
- 27-Hameed B, Mahmoud D, Ahmad A. Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste. Journal of Hazardous Materials. 2008;158(1):65-72.
- 28-Zheng H, Wang Y, Zheng Y, Zhang H, Liang S, Long M. Equilibrium, kinetic and thermodynamic studies on the sorption of 4-hydroxyphenol on Cr-bentonite. Chemical Engineering Journal. 2008;143(1):117-23.
- 29-Largergren S. Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar. 1898;24:1-39.
- 30-Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochemistry. 1999;34:451-65.
- 31-Ornelas NJR, Aguiar CR, Moraes SMO, Adriano WS, Gonçalves LRB. Activated carbon adsorbent for the aqueous phase adsorption of amoxicillin in a fixed bed. Chemical Engineering & Technology. 2010;33(4):658-63.
- 32-Liu W, Zhang J, Zhang C, Ren L. Sorption of norfloxacin by lotus stalk-based activated carbon and iron-doped activated alumina: mechanisms, isotherms and kinetics. Chemical Engineering Journal. 2011;171(2):431-38.
- 33-Homem V, Alves A, Santos L. Amoxicillin removal from aqueous matrices by sorption with almond shell ashes. International Journal of Environmental and Analytical Chemistry. 2010;90(14-15):1063-84.
- 34-Rivera-Utrilla J, Prados-Joya G, Sánchez-Polo M, Ferro-García M, Bautista-Toledo I. Removal of nitroimidazole antibiotics from aqueous solution by adsorption/bioadsorption on activated carbon. Journal of Hazardous Materials. 2009;170(1):298-305.
- 35-Çalışkan E, Göktürk S. Adsorption characteristics of sulfamethoxazole and metronidazole on activated carbon. Separation Science and Technology. 2010;45(2):244-55.
- 36-Moussavi G, Alahabadi A, Yaghmaeian K, Eskandari M. Preparation, characterization and adsorption

potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chemical Engineering Journal. 2013;217:119-28.

- 37-Acharya J, Sahu J, Mohanty C, Meikap B. Removal of lead (II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chemical Engineering Journal. 2009;149(1):249-62.
- 38-Fan L, Luo C, Lv Z, Lu F, Qiu H. Preparation of magnetic modified chitosan and adsorption of Zn2+ from aqueous solutions. Colloids and Surfaces B: Biointerfaces. 2011;88(2):574-81.
- 39-Teker M, Imamoglu M, Saltabas O. Adsorption of copper and cadmium ions by activated carbon from rice hulls. Turkish Journal of Chemistry. 1999;23(2):185-91.
- 40-Afkhami A, Saber-Tehrani M, Bagheri H. Modified maghemite nanoparticles as an efficient adsorbent for removing some cationic dyes from aqueous solution. Desalination. 2010;263(1):240-48.
- 41-Wong Y, Szeto Y, Cheung W, McKay G. Adsorption of acid dyes on chitosan—equilibrium isotherm analyses. Process Biochemistry. 2004;39(6):695-704.
- 42-Karagozoglu B, Tasdemir M, Demirbas E, Kobya M. The adsorption of basic dye (Astrazon Blue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: Kinetic and equilibrium studies. Journal of Hazardous Materials. 2007;147(1):297-306.
- 43-Shaarani F, Hameed B. Batch adsorption of 2, 4-dichlorophenol onto activated carbon derived from agricultural waste. Desalination. 2010;255(1):159-64.
- 44-Ai L, Jiang J. Fast removal of organic dyes from aqueous solutions by AC/ferrospinel composite. Desalination. 2010;262(1):134-40.
- 45-Zheng H, Liu D, Zheng Y, Liang S, Liu Z. Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. Journal of Hazardous Materials. 2009;167(1):141-47.
- 46-Budyanto S, Soedjono S, Irawaty W, Indraswati N. Studies of adsorption equilibria and kinetics of amoxicillin from simulated wastewater using activated carbon and natural bentonite. Journal of Environmental Protection Science. 2008;2:72-80.

Downloaded from ijhe.tums.ac.ir on 2024-07-17]

ht i an an the دوره هفتم، شماره اول ، بهار ۱۳۹۳ فصلنامه علمى پژوهشى انجمن علمى بهداشت محيط اير ان

Efficiency of powder activated carbon magnetized by Fe₃O₄ nanoparticles for amoxicillin removal from aqueous solutions: Equilibrium and kinetic studies of adsorption process

¹Kakavandi Babak, *² Rezaei Kalantary Roshanak, ² Jonidi Jafari Ahmad, ² Esrafily Ali, ³Gholizadeh Abdolmajid, ⁴Azari Ali

¹Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

²Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran ³Faculty of Environmental Health group, Health School, North Khorasan University of Medical Sciences, Bojnurd, Iran

⁴ Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

Received; 19 December 2012 Accepted; 19 September 2012

ABSTRACT

Background and Objective: Extreme use of antibiotics and discharging them to the environment lead to serious consequences. Activated carbon is the most commonly adsorbent for these contaminants but its main drawback is difficulty of its separation. The objective of this study was synthesis of magnetic activated carbon by Fe_3O_4 and investigating its efficiency in adsorption of amoxicillin from synthetic wastewater.

Materials and Methods: Materials and Methods: Physical and structural characteristics of the adsorbent synthesized were analyzed using SEM, TEM, XRD and BET techniques. The effect of factors like pH, initial concentration of amoxicillin and adsorbent, contact time, and temperature were investigated to determine thermodynamic parameters, equilibrium isotherms, and kinetics of adsorption process.

Results: Physical characteristics of the magnetized activated carbon showed that Fe3O4 nanoparticles had the average size of 30-80 nm and BET surface area was 571 m2/g. The optimum conditions of adsorption were: pH=5, contact time=90min, adsorbent dose of 1g/L and temperature 200C. The equilibrium isotherms data showed that the adsorption process fitted both Freundlich and Longmuir models with the maximum capacity of 136.98 mg/g. The kinetic of the adsorption process followed pseudo second-order model. The negative values of Δ H0 and Δ G0 obtained from studying the adsorption thermodynamic suggested that amoxicillin adsorption on magnetic activated carbon was exothermic and spontaneous.

Conclusion: The present study showed that the magnetic activated carbon has high potential for adsorption of amoxicillin, in addition to features like simple and rapid separation. Therefore, it can be used for adsorption and separation of such pollutants from aqueous solutions.

Keywords: Amoxicillin, adsorption process, magnetic activated carbon, isotherm, Fe₃O₄ nanoparticles

*Corresponding Author: *rezaei*,r@iums,ac,ir Tel:----Fax:-----